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We study the behavior of a Frisch-Hasslacher-Pomeau lattice gas automaton 
under the effect of a spatially periodic forcing. It is shown that the lattice gas 
dynamics reproduces the steady-state features of the bifurcation pattern predic- 
ted by a properly truncated model of the Navier Stokes equations. In addition, 
we show that the dynamical evolution of the instabilities driving the bifurcation 
can be modeled by supplementing the truncated Navier-Stokes equation with a 
random force chosen on the basis of the automaton noise. 
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1. I N T R O D U C T I O N  

In the last few years  there has been a growing  interest  in the s tudy of lat t ice 
gas a u t o m a t a  ~1) ( L G A )  as a va luable  tool  to s imulate  two-d imens iona l  
and,  more  recently,  also th ree-d imens iona l  fluid flows. (2~ This interest  is 
mo t iva t ed  by at least two k ind  of reasons.  One  is that  L G A  may  provide  
a prac t ica l  b r eak th rough  for s imula t ing  flows in complex  geometr ies  using 
massJive para l le l i sm on spec ia l -purpose  computers .  (~) The second is that  
L G A  are  an appea l ing  tool  for s tudying the whole set of scales of mot ion ,  
ranging  from " h y d r o d y n a m i c  f luctuat ions"  up to large-scale coherent  
structures.  L G A  s imula t ions  have been successfully c o m p a r e d  agains t  
exper imenta l  and  numer ica l  results for two- and th ree-d imens iona l  flows at 
m o d e r a t e  Reynolds  numbers .  In L G A  s imula t ions  the Reynolds  number ,  
or, equivalent ly ,  the viscosity can be es t imated  by means  of the f luctuat ion-  
d iss ipa t ion  theorem.  ~7~ Alternat ively,  ~4) one can define the diss ipat ive scale 
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ld in a fluid as the scale at which the microscopic noise becomes com- 
parable to the hydrodynamic signal, and then compute the viscosity as 
v ~ u d l  J ,  u d being a typical velocity fluctuation at the scale I~. Both ways 
show that there is an intimate connection between the microscopic noise 
and the dissipative effects taking place in a fluid. 

This is only a particular aspect of a more general question which can 
be asked via LGA simulations, which concerns the effect of the microcospic 
noise on the hydrodynamic scales of motion. In the present paper we 
adress this question in a well-defined case. We consider a two-dimensional 
incompressible flow in a square box with periodic boundary conditions, 
forced by a large scale shear flow (see Section 3). Denoting by F the 
strength of the forcing term, we know that for small F the flow pattern is 
the same as the one of the forcing term. However, for F larger than a 
certain critical value F~., according to well-known stability theorems 
established for two-dimensional shear flows, a bifurcation should occur. 
Then, for F >  Fc the flow develops a new pattern which differs from the one 
imposed by forcing term because of the contribution of the bifurcated 
modes. One can easily show that the amplitude of the bifurcated pattern 
depends on F, while the characteristic time of the onset of the bifurcation 
depends on the level of microscopic noise acting in the system as well as 
on the initial conditions. By the central manifold theorem, we know that a 
fluid system near the bifurcation threshold can be accurately described by 
a few degrees of freedom, and precisely those specifying the unstable 
manifold. (5) It follows that for F sufficiently close to Fc one can undertake 
an enlightening comparison between the stochastic LGA dynamics and the 
dynamics resulting from the projection of the Navier-Stokes equations, 
stochastically perturbed by the hydrodynamic noise, onto the unstable 
manifold. This comparison is the central focus of the present investigation. 
We show that the two stochastic dynamics exhibit a remarkable agreement 
once the stochastic noise, computed by measuring the variance of the 
forced pattern of the lattice gas in a subcritical regime, is included in the 
truncated Navier-Stokes equations. 

The shear forcing has been chosen in the form of a spatially periodic 
profile, the so-called Kolmogorov flow, which implies that the correspond- 
ing Fourier amplitude can be used as a forcing parameter (for a review on 
the Kolmogorov flow see ref. 6). This choice also implies that the unstable 
manifold is of low codimensionality, namely 2, and can consequently be 
characterized by a small number of Fourier modes. Finally, we investigate 
the probability density distribution (p.d.d.) of the hydrodynamic fluctua- 
tions. It turns out that the p.d.d, is pretty close to a Gaussian, thus 
allowing us to assume that the stochastic noise acting in the system is 
essentially a white noise. Our results confirm the existence of a clear link 
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between LGA models and the mathematical theory of stochastic differential 
equations, We are currently investigating further connections between these 
two fields (for example, the presence of "large-deviations" effects). 

2. T H E  M O D E L  

Our investigation is based upon the Frisch-Hasslacher-Pomeau 
(FHP)  cellular automaton. (1> This automaton consists of a set of 
"pseudoparticles" which are constrained to move with a unit speed and a 
unit mass along the links of a hexagonal lattice. Hence, the state of the 
automaton is entirely specified in terms of a set of Boolean variables s o 
which take the value zero or one according to whether the j th  site holds 
a particle moving along the ith link or not. The interaction between the 
pseudoparticles is governed by a set of collision rules which, site by site, 
mimic the momentum transfers occurring in a real fluid. These collision 
rules are subject to the constraint that, on each site, the particle number as 
well as the linear momentum must be conserved. In addition, collisions are 
compatible with an exclusion principle which forbids the simultaneous 
presence of two or more particles with the same speed at the same spatial 
location. 

These simple prescriptions are sufficient to construct the micro- 
dynamic equations which govern the evolution of the Boolean field s+j. 
Starting from the microdynamic equations and taking the appropriate 
limits described in ref. 7, it is possible to derive a set of macroscopic equa- 
tions which govern the evolution of the hydrodynamic fields, such as the 
density and the velocity of the automaton "fluid." For low Mach number 
the macroscopic read as follows: 

V . J = O  (2.1) 

•,J + [g(p)/p]J" VJ = v 3 J  - c~ Vp' (2.2) 

where p and J are the mass density and mass current density, respectively. 
The quantity p' represents the density perturbation with respect to the 
equilibrium value and c , =  (3/7) 1/2 is the (dimensionless) speed of sound 
of the automaton fluid. The coefficient v is the kinematic shear viscosity 
and g(d)= 7 ( 2 d - 7 ) / 1 2 ( d - 1 )  is a characteristic advection-rescaling factor 
associated with the lack of Galilean invariance of the lattice and d the 
mean density per link. The macroscopic variables p and J should result 
upon ensemble averaging of the microdynamic equations which govern the 
evolution of the Boolean field of the automaton. In practice, they are 
defined as spatial (or spatiotemporal) averages over a subregion of the 
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lattice. In the present work, we use square blocks containing n sites per 
dimension, so that the macroscopic variables are defined as follows: 

7 n 2 7 n 2 

P= Z Z so, J =  Z 2 s0ei (2.3) 
i=1  j = l  i - 1  j = l  

where ci ( i=  1, 7) is the set unit vectors connecting the j th  site of the 
averaging box to its six nearest neighbors (conventionally we assume e 7 = 0 
for rest particles)) 

We are interested in the behavior of the automaton under the effect of 
a spatially periodic force. For  convenience, we assume this force to be 
directed along the horizontal direction x with a periodic dependence along 
the vertical coordinate y: 

f(Y) = fo sin(ky)~ (2.4) 

where 2 is the unit vector along x and f0 is a free parameter which will 
serve us to control the intensity of the forcing term. As described in ref. 7, 
the presence of such an additional term on the rhs of the Eq. (2.2) can be 
realized by introducing a bias in the collision rules which allows for rever- 
sal of the speed component along x, thus yielding a net momentum input 
along this direction. The spatial modulation of this net momentum input is 
obtained by allowing the extra collision to occur with a probability which 
is proportional to the prescribed shape factor sin(ky). As a result of the 
new automaton dynamics, Eq. (2.2) acquires an extra term Pfo sin(ky) and 
reads therefore as follows: 

O,J+[g(p)/p]J.VJ=vAJ-c~Vp'+pfosin(ky)~ (2.5) 

When the forcing is "weak," and consequently the nonlinear term is "small" 
( J ' V J  ~ v A J), the physics contained in the above equation is controlled 
by the usual competition between the source, which feeds free energy into 
the system, and the collisional effects, which dissipate it. After a ramp up 
time of the order of 1/vk 2, these two mechanisms balance each other and 
the current density attains a steady-state value pfo/vk 2. However, when the 
forcing term becomes sufficiently large, nonlinear mode-mode coupling 
effects may be triggered which can alter the simple picture outlined above 
in a substantial way. It is therefore of interest to probe the automaton 
dynamics in this delicate and challenging scenario. 

3 Note that the averaging factor 1/n 2 has been omitted in the definition of p and J given by 

Eq. (2.3). Consequently, p and d are to be interpreted as integral quantities associated with 
each macroscopic box. 
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3. S T A B I L I T Y  A N A L Y S I S  

We find it convenient to recast Eq. (2.2) in terms of the stream 
function ~, defined by ~x ~u= _ j y  and 0y ~ =  J~. This reads: 

6, ~ ~,+/~{ ~, ~ }  = ~  ~ - ~  ~q5 (3.l) 

where the symbol { .,-} denotes the Jacobian, ~ = cos(ky), 

_ P f O = 2 F  
- k3 - (3.2) 

and 

g(p) 
fl - (3.3) 

P 

Our goal is to compare the automaton dynamics with the solution of 
Eq. (3.1). For small values of F we expect ~P_= 2F@/v to be a stable steady 
state, while for F greater than a critical value Fc this steady state becomes 
unstable. In order to compute F,., we have to perform a linear stability 
analysis of Eq. (3.1) around the steady state ~P. This implies solving the 
following linear partial differential equation for the fluctuating component 
~b of the stream function ~: 

6, A 0 + fi0x ~ . .~ , -  fl~,.~x zJO = vA AO (3.4) 

This equation is solved in terms of normal modes 

= exp(2t)[A(y)  sin(mx) + B(y)  cos(mx)] (3.5) 

where each mode along x can be examined separately because the steady- 
state ~' only depends on y. After Fourier expanding along y and retaining 
only first-order harmonics (which can be shown to be accurate within 2 % 
for m = 1), one obtains 

m2 k 2 } F c = i n f  v 2 + v 2 ( l + k  2) 
~, flk(k 2 _ m2)1/2 f l k ( k  2 _ _  1)1/2 (3.6) 

where k = 0, or, 2a,..., with cr the aspect ratio of the rectangular domain, 

namely 2 / ~ .  It should be noted that since the forcing depends only on 
one spatial coordinate, the two eigenvalues coincide: hence the unstable 
manifold has codimension 2. 

For F ~  F c we expect the dynamics of the Navier Stokes equations to 
be dominated by the unstable modes (m=0 ,  k), ( m = l ,  k = 0 ) ,  and 
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(m = 1, k), to which all the others become rapidly "slaved." The resulting 
reduction in the number of effective degrees of freedom can be exploited to 
express the stream function ~ solely in terms of the triplet of unstable 
modes, that is, by assuming 

= A ~o exp(ix) + A lk exp(ix + iky) + Aok exp(iky) + (*) (3.7) 

Inserting this expression in (2.4), we obtain the following equations of 
motion for the amplitudes A lo, A ~k, and Aok: 

k2Aok q- vk4A ok - k4 f = - f i  k3A *0 A l k  (3.8) 

lO + vA lo = flkA*~A 1~ (3.9) 

( l+kZ)A~k+v( l+kZ)ZA~k=13k(kZ-1)Ao~:A,o  (3.10) 

For F >  F,., the stable steady-state solution of Eqs. (3.8)-(3.10) reads 

7tok = Fc/v  

-dlo = (k/v) Fc.(F/Fc- 1) 1/2 exp(i0) (3.11) 

AI~ = (v/~)(F/F~.- 1) 1/2 exp(i0) 

where exp(i0) is an arbitrary phase factor which results from the fact that 
the forcing does not depend on the x coordinate. In the following we shall 
directly compare the automaton dynamics with the solutions of Eqs. 
(3.8)-(3.10), stochastically perturbed by a random noise derived from the 
automaton dynamics (see next section). 

In order to compare with the numerical result, it is useful to reexpress 
the criticality condition in terms of the experimental parameter ) t ,  which 
represents the number of units of momentum injected per time step in the 
overall automaton along the horizontal direction. The link between ) ,  
and fo is obtained by computing the total momentum change due to the 
force as 

M 2 M 2  

) t =  ~ pOtU=Cpofo  n2 ~ [sinkyl~2C---N2pofo (3.12) 
I - - 1  I ~ 1  TC 

where N is the number of automata sites per dimension and M = N/n is the 
number of averaging boxes per dimension used to define the fluid fields and 
Po = P~ n2. In this equation C is a calibration coefficient, to be determined 
by the numerical experiment, which accounts for the marginal excitation of 
"satellite" harmonics besides the "pump" mode, due to the random nature 
of the implementation of the forcing term. Hence, a value of the coefficient 
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C >  l should be expected. Combining Eqs. (3.7) and (3.12), we can finally 
compute the critical value ),c as 

k 2 m 2 -H k 2 
]lt~. = 32C~2po v2 (3.13) 

gN (k 2 - rn2) 1/2 

This formula serve us as a guideline to compare the numerical results with 
the predictions of the truncated Navier-Stokes model (see next section). 

4. N U M E R I C A L  R E S U L T S  

In order to test the behavior of the F H P  automaton with respect to 
the theoretical predictions of the reduced NS model, we have performed a 
series of numerical experiments with an in-core Fortran code running on a 
IBM 3090 with vector facility at a processing rate of 0.1 CPU sec per time 
step/9~ The automaton consists of 10242 grid points equally distributed in 
a rectangular domain of side 2~ along x and 3 ~/2~z along y with a cell den- 
sity d E  p/7n 2 =0.1 and a null macroscopic initial current J =0.  Spatial 
averaging is performed over blocks of 162 automaton sites, so that the 
macroscopic variables are defined over a 642 grid. The forcing term has the 
form given by Eq. (2.4) with a pump wavenumber k = 3a. 

To help the clarity of the discussion of the numerical results, a few 
words on the implementation of the periodic force are in order. In order to 
profit from multispin coding, the state of the automaton has been encoded 
into a series of seven arrays of dimension N along y and N/32 along x, 32 
being the number of bits in a single computer word. Therefore, we find it 
convenient to regard the computational domain as a collection of N b = 
(N/32) 2 nonoverlapping boxes, each containing 322 spatial locations. At 
each time step, a prescribed fraction, say f ,  of these Nh boxes is elected for 
momentum input along x. This means that once a given box and a given 
site within this box have been identified (at random), a random number r 
between - 1  and 1 is extracted and compared with a local estimator 
e = sin ky. The procedure is now as follows: 

If Per < r: process another box (if any). 
Else: construct a forcing operator O s and apply it in addition to the 

usual momentum-conserving operator. 

This forcing operator has been chosen such as to transfer quanta of 
momentum from directions 3-~ 2, 4 ~ 1, and 5 ~ 6 if sin ky > 0 and vice 
versa if sin ky < 0 (links are labeled 1 to 6 counterclockwise, with 1 corre- 
sponding to propagation along +x) .  Clearly, Oj. reduces to the identity 
whenever the state of the automaton at that given site does not allow for 
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the transitions mentioned above. For instance, if link 3 is empty and link 2 
is occupied, no transfer of positive quanta from 3 to 2 can take place. 

As a result, each site can receive a momentum input along x ranging 
from 0 to 4 units, so that the global momentum input rate ) t  ranges from 
zero to 4fNbd(1 - d ) ,  the factor d(1 - d )  being related to the binary nature 
of Of. This upper bound guides the choice of f to obtain values of)~ in the 
desired range (sub or supercritical). 

Let us now come to the illustration of the numerical results. In a linear 
regime, the steady-state amplitude of the mass current Jo3 is related to the 
forcing parameter f0 by the relation Jo3 = P f o / v k 2 ,  where k a = 2 ~ k / N  is the 
pump wavevector in automata units. Due to Eqs. (3.12), this relation can 
also be written as 

Jo3 Jt (4.1) 
Jo3 - n 2 C 8 ~ v k  2 

This expression refers to a nonbifurcated linear response and consequently 
we have to check it in a subcritical ( F < F c )  regime. According to the 
expression (3.13), if we assume C =  1 (full control over the force strength), 
the critical momentum input for the wavenumber (rn=0,  k = 3 a )  is 
J ,c~  1.95. In order to be reasonably sure of running below the critical 
threshold, we have chosen Jt ~ 0.67. 

Consistent with this choice, the numerical experiment does not exhibit 
any bifurcation, the only harmonic excited in the spectrum being the original 
one (0, 3a), as it is apparent from Fig. 1, which displays the automaton 
flow after 300 x 1024 steps. The experimental value of the amplitude of this 
harmonic is I,/031 = 6 x 10 3, which is matched to the theoretical value of 
6.6 x 10 3 by fixing C ~  1.1 in Eq. (3.13). This raises the "effective" critical 
threshold to about J,~.~2.1, which, being fairly above the experimental 
value of 0.67, proves the consistency of the subcritical experiment. 

Having calibrated the forcing term, we can proceed to probe the 
automaton in the more challenging supercritical regime. To this purpose 
we choose ~r = 2.6. In this case, after the initial onset of the linear mode, 
the automaton displays a neat bifurcation which becomes manifest through 
the appearance of the modes (1,0) and (1, 3a). The existence of these 
modes is clearly detectable in Fig. 2, which shows the velocity field of the 
automaton after 400 x 1024 steps. Along the vertical direction we recognize 
three wavelengths due to the linear mode, interspersed with "islands" which 
are the signature of the bifurcated (1, 0) mode. This qualitative agreement 
can be checked quantitatively by measuring the steady-state amplitudes of 
the three interacting modes. The experiment yields i J03] ~ 1.8X 10 2, 
IJ~oI ~ 10 2, and 1]131 ~ 5 . 6 x  10 3 to be compared with the theoretical 
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Fig. 1. The flow pattern in the subcritical regime F<F~, )~=0.67. Note the modulation of 
the velocity field corresponding to the pump mode (0, 3a). 

values given by Eqs. (4.1) and (3.11), which are 2 x  10 -2, 9 x  10 -3, and 
8 x  10 3, respectively. We note that there is about  a 15% discrepancy 
between the theoretical values and those obtained by the automaton.  
However, by taking into account further degrees of freedom [i.e., mode 
(2, 3G), which is directly excited by the nonlinear coupling of modes (l, 3a) 
and (1, 0)], this discrepancy reduces to roughly 5%. 

These results indicate that the steady-state hydrodynamic behavior of 
the automaton under a periodic forcing reproduces the one predicted by 
the truncated Navier-Stokes equations with a reasonable accuracy. 

The same consideration does not apply to the dynamics of the bifurca- 
tion, which, in the case of the automaton is greatly affected by the presence 
of the ~ noise," a feature which has no counterpart  in the 
Navier-Stokes picture. On intuitive grounds, one expects the main effect of 
the molecular noise to be an anticipation of the onset of the instability. In 
order to investigate this point, we introduce a stochastic version of the 
reduced Navier-Stokes model which includes a random forcing term 
tailored on the basis of the automaton noise. From the analysis presented 
in ref. 7, we know that, by neglecting nonlinear terms, the automaton noise 
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Fig. 2. The flow pattern for .],= 2.6, i.e., in a supercritical regime. One recognizes the 
presence of the bifurcated modes which produce the roll-like structures. 

produces  the same variance on each Fourier  mode  of the velocity field. This 
implies that  the stochast ic  (Langevin)  version of Eqs. (3.8) (3.10) reads 

d[k2al]  = [ - v k 4 a t  

d[kZbl]  = [ - v k 4 b l  

d[a2] = [ - v a  2 + 

d [ a 3 ] =  [ - v a  3+ 

d [ ( k  2+ 1)a4]  = [ - v ( k  2+ 

d [ ( k  2 + 1) as ]  

- F k 4 - f l k 3 ( a 2 a 4 + a 3 a s ) ]  d t+gt /2k  2 dW1 (4.2) 

- flk3(aza5 - a3a4) ] dt + el/2k ~ dW2 (4.3) 

f lka4al] dt + ~1/2 d W  3 (4.4) 

flka5 al] dt + ~1/2 dW4 (4.5) 

1) 2 a4 + fik(k 2 -  1) ala2] dt 

+ el/2(k2 + 1 ) d W  5 (4.6) 

= [ - v ( k 2 +  1 ) 2 a s + f l k ( k  2 -  1) a l a 3 ]  dt 

+ gt/'2(k2 + 1 ) d W  6 (4.7) 

where Aok = aL + ibl, A to = a2 + ia3, A ik = a4 + ias, and dWj  is a Wiener 
noise of zero mean  and variance dt. Of  course, this set of  stochastic equa- 
tions is meaningful  only if the a u t o m a t o n  noise is indeed of Gauss ian  type. 
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To check this point, we have analyzed the velocity signal produced by the 
automaton in the subcritical case and assessed its basic statistical proper- 
ties. This analysis has led us to conclude that the automaton noise is quite 
close to a Gaussian noise, its amplitude e being about 60 for the specific 
case under consideration, a value about two times smaller than the 
theoretical predictions based upon the fluctuation-dissipation theorem. We 
have performed a series of companion simulations of the reduced NS 
system in both its deterministic and stochastic versions. A synthetic picture 
of the results of these simulations is shown in Fig. 3, where we report the 
time evolution of the bifurcated mode (l, 0) as obtained by the original 
automaton (label A), the deterministic Navier-Stokes model (solid line), 
and its stochastic version (dotted line). This figure confirms a reasonable 
agreement between the steady-state amplitudes of the modes in all three 
kinds of models: automaton, deterministic, and stochastic Navier-Stokes. 
The dynamic behavior of the stochastic models, both the automaton and 
the Navier-Stokes, displays, however, a striking anticipation of the onset of 
the instability. As already mentioned, this anticipation matches the physical 
intuition that by increasing the amount of fluctuations, the system tends to 
be driven away from the unstable state more and more rapidly. To judge 
the effect of the noise amplitude on the escape time of the system, we have 
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Fig. 3. The amplitude of the current density J for the mode (1, 0) as a function of time. The 
label A refers to the au tomata  simulation, the solid line to the deterministic Navier-Stokes 
integration, and the dotted line to the Navier-Stokes integration stochastically perturbed. On 
the horizontal axis units refer to au tomata  time steps. 
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Fig. 4. Amplitude of the current density for the mode (1,0) obtained by numerically 
integrating the stochastically perturbed Navier-Stokes equation for different values of the 
noise intensity. Labels a, 1, 2, and d refer to different intensities of the noise ~, namely a to 
e = 6 0  (the value used in the computations of Fig. 3), 1 to ~=6,  2 to ~ -0 .6 ,  and d to e = 0 ,  
i.e., the deterministic evolution. 

run the Langevin simulation with four different values of e, namely 0, 0.6, 
6, and 60. The results are displayed in Fig. 4. This figure shows that the 
onset time of the instability is a sensitive function of the noise amplitude 
and proves therefore that the agreement between the Langevin simulations 
and the automata dynamics is not incidental but results from an 
appropriate choice of the noise level. Since the noise level is essentially con- 
trolled by the spatial resolution, it is clear that LGA simulations offer the 
opportunity of using the lattice spacing as a "handle" to tune the noise 
strength and accomplish a systematic study of the transition from strongly 
fluctuating to hydrodynamic Navier-Stokes regimes, 

5. C O N C L U S I O N  

We have shown that the FHP lattice gas dynamics correctly 
reproduces the steady-state features of the bifurcated regime of a 
Navier-Stokes fluid under the effect of a spatially periodic force. However, 
an important difference in the dynamical behavior has also been pointed 
out. This concerns a considerable anticipation of the onset of the instability 
which leads to the bifurcation. We have also shown that the same effect can 
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be detected within the framework of a stochastic (Langevin) formulation of 
the reduced Navier-Stokes model. This proves that there is a clear link 
between LGA dynamics and the theory of stochastic differential equa- 
tions. (1~ It seems therefore reasonable to expect that further investigations 
along this line will deepen our understanding of the fluid behavior in the 
presence of random fluctuations and, ultimately, of the mechanisms which 
govern dissipative phenomena in fluid systems. 
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